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Shifted-Frequency

Adnan Koksal,

Abstract—The shifted frequency internal equivalence (SFIE)
theorem involving inhomogeneous regions is introduced and
proven. For a lossless inhomogeneous region using a vector
Green’s theorem and potential formulation, it is shown that
the frequency-domain electromagnetic field at frequencyw
inside the region can be obtained using a set of equivalent
volume and surface currents radiating in free space and
at the different frequency wq. The equivalent currents thus
obtained are functions of the two frequencies, electric- and
magnetic-volume-type sources of the original problem, material
parameters, and the original field phasors atw, and they only
exist inside the region and on its boundary. A direct application
of this equivalence is that it can be used to construct an internal
equivalence at a shifted frequency for electromagnetic scattering
problems if data are needed in a band of frequencyw, can be
kept constant while the incident field frequency changes and, as
a result, full computation of fields at each different frequency
for volume-type equivalent sources can be avoided.

Index Terms—Electromagnetic analysis, electromagnetic scat-
tering by nhonhomogeneous media, frequency-domain analysis.
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(pwos Pmeg) Electric and magnetic charges in the equiva-

lent problem.

(J:,» M) Equivalent electric and magnetic surface cur-
rents atwyg.

(E.,, H,,) Frequency-domain field at shifted frequency.

Al Magnetic vector potential due @7, .

Al Magnetic vector potential due W, .

wo Electric vector potential due td, .
F;, Electric vector potential due t@;, .
Y o M¢, — M.

HIS PAPER presents a proof of an internal equivalence
in the frequency domain at a shifted frequency for an
electromagnetic problem involving a different frequency.

The original problem involves a lossless inhomogeneous
region of spaceV, which has continuously differentiable
material parameters. The sources W) both electric and
magnetic, radiate at frequency.

INTRODUCTION

.- NOMENCLATURE In the equivalent problem, the sources exist onlyVin

r Field point coordinate. and on its boundary, and they radiate in free space at a
r Source point coordinate. different frequencyy. These equivalent sources consist of the
(e, 1) Material parameters of medium occupyiig sources of the original problem, and electric- and magnetic-
w Original problem frequency. type volume and surface currents. Equivalent volume currents
(J.., M,,) Electric and magnetic currents in originalare functions of the two frequenciesandwy, and the sources

problem. and the field of the original problem, whereas the surface
(s pme,)  Electric and magnetic charges in originakurrents depend on the original fiell(, H,,) only.

problem. The equivalence is presented in Section Il, and its proof is
(E., H,), given in Section lll, followed by the conclusion in Section IV.
(D.., B.) Frequency-domain field in original problem.The proof is based on an application of a vector Green's
wo Shifted frequency. theorem on E_, H,), and on the potential formulation of
G, F Vector functions used in Green’s theorem. the field in the equivalent problem, which is denoted by
) Wave function choice for expansion of(E,,, H.,). The expansion is very similar to the Stratton—-Chu

E.(r). formulation [1], [2], with the main difference being the choice
a Constant vector multiplyingp. of the wave functiony.
ko Wavenumber in free space a§. In this paper, the word equivalence is meant for the equiv-
ks Wavenumber in material iy at w. alence of E,,, H,,) to (E., H,) only. As will become
n; Surface normal on the boundaries directedbvious after the equivalence is stated and its proof is given,

into V. D and B fields in the original and equivalent problem are
n Surface normal on the boundaries directedifferent.

out of V.
(i MZ,) rEeiL:;va;J::C:)t.electrlc and magnetic volume cur- I1l. SHIFTED-FREQUENCY INTERNAL EQUIVALENCE
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Consider the regior/ illustrated in Fig. 1, bounded by
the surfacesSy, ---, S,. The material parameters, (z) in
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of position. The electromagnetic field W generated by the
sources operating at the frequeneysatisfies the following
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Fig. 1. Electromagnetic field i/ is excited by the source§l.,, M.,)
operating at the frequeney. Field point P is surrounded by a spheie for
the application of vector Green’s theorem. Fig. 2. Shifted-frequency equivalent problem for Fig. 1. Material body is
replaced by the equivalent sourdgs), , M¢, ) and(J¢, , Mg, ) radiating
in free space at frequency.
Maxwell’'s equations:

VxE, = — wpH, — M, 1) IV. PROOF OF SFIE
V x H, = jweE, +Jo (2)  The proof of the equivalence will be carried out in four
V. Bu. = Pmy (3) StepS.
V-D. =p. (4) In the first step, an expansion @, (r) will be obtained
_ o _ using a vector Green’s theorem. The procedure follows the
and the following continuity equations: same lines as the Stratton—Chu formulation [1], [2]. The main
V- Jo+ jwps =0 ) differences are the assumed inhomogeneity of the medium,

the usage of source point-field point notation, and the usage
V- Mo + jwpme, =0. 6)  of a differents function to carry out the expansion. #

The electromagnetic field(,, H,,) in V can be obtained in function involving the wavenumber in free space at frequency
an equivalent problem where the sources radiate at a differeitiS chosen to obtain an expansion that can be compared to
frequency. The equivalence is given as follows. potential formulation results.

Equivalence: The frequency-domain electromagnetic field N the second step, the electric-field phasor of equivalent
(E., H.)) in the region with properties described above an¢Plume sources operating aj, will be obtained in the
shown in Fig. 1 can be obtained using the following sourcd®quency domain using potential theory.

defined inV, radiating in free-space at the frequenay. The third step involves the calculation of the electric-field
. phasor of equivalent surface sources operatingyaising the
Is = swe —woeo) By + Jo (7)  potential theory.
MY, = y(wp — wopo)He + M., (8) In the fourth and final step, the electric fields calculated in
J3, = —haxH, (9) the second and the third step will be added to obf&in,
s R and the result will be shown to be the same as the expansion
M; =0 xE, (10)

obtained forE,, in the first step. The discussion for the case
wheren is the surface normal on the boundarylofand it is  of the magnetic-field phasdd., (r) will complete the proof.
directed out of regio®v. The equivalent problem thus obtained
is illustrated in Fig. 2. With the equivalent source definitioni

given in (7)—(10), the electromagnetic field in the equivalent Step I: Expansion dB.(r)

problem satisfies the following Maxwell's equations: The expansion oE,,(r) will be carried out using a vector
- Green’'s theorem. Consider again the regign shown in
V X Eu, = — jwopoHu, — M, (11)  Fig. 1, bounded by the surfacss, - -, S,,. Use S to denote
V x H,, =jwocoE., +J, (12) the union of allS;, i =1, ---, n. Let F and G be two vector
V- By = Pmuo (13) functions of position in this region, with continuous first and

second derivatives everywhere withihand on the boundary

VD =puo (14) surfaces. Then, ify; is the unit vector normal to a bounding
and the following continuity equations: surface directed into the regior
V- Js, +wopwe =0 (15) / / / /
V'MZO-Fjwopmwo:O- (16) /V(GV XV xF-F-V xV XG)dV
As a result, in order to prove shifted frequency internal — _/ (FxV xG-GxV xF) -fa;dS. (17)
equivalence (SFIE), we need to show that s

E., =E., In order to apply the given vector Green’s theorem to expand
H,, =H.. E.(r), consider an interior poinP in V' and surround this
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point by a spheré: of radiusry, and denote the remainingand combining all these facts, (20) can be rewritten as
volume byV — Vs. Considering Fig. 1} — Vx is the region

bounded byS and Ss. ' 5 5 ,
Choose the vector functions of positi€ and F as a /,_V (A5 = FDEwt + jwpVip x H,
—_— + gwpdop + M, x Vgl dV
e Jkolr—r
G:Wa:z/)a (18) +a-/v v V/X(T/)Mu,)dV‘i‘/V v V’
F=E,() (19) ) -
[Eu(a-V'9)]dV —a- / (V' - E.)V'ypdV
V—Vs

where ky = wo+/1oco, the wavenumber in free space @&, R R
and a is a constant vector. = /s+s [(E x V' x pa)-fii— (pax V' x E,) A;] dS.

In the regionV — Vx, G and F, as defined by (18) and (26)
(19), satisfy the continuity requirements of the vector Green’s

theorem given in (17). Applying this theorem to cho%eand _ ) )
G, we have The second- and third-volume integrals in (26) can be trans-

formed into the following surface integrals:

/ (pa-V' x V' xE, —E, -V x V' x9a)dV
V_vs a- / V' x (M) dV =—a- / iy x M, dS
V-V S+Ss

:—/ (E, x V' x¢a—vpax V' x E,)-n,;dS. @27
S+5Ss
(20) / V' [E.(a-V'¢)]dV =—a- / (f; - E,)V'p dS.
V—Vs S+Ss
(28)

In (20), and in the equations following, during the expansion it
is understood thate( 1), (E.,, H,), and (., M,,) inside the
integral signs depend ar, and this dependence is suppressdd order to convert the surface integrals on the right-hand side
for brevity unless it is necessary to differentiate between the (26) to the desired form, the following transformations are
source and the field coordinates. utilized:
We can use (1) and (2) after converting the equations to

primed coordinates to obta®’ x V' x E,, as N

[E, x (V' x¢a)]-n;

VXV xEy = K2Ey—jwpdu—V' x My—jwV'p x Ha, = [Eo x (V9 xa)] i = (8 x Eu) x VY] -a (29)
(21) Plax V' x E,) -1y
= —gwpp(a x Hy,) -h; —plax M) - fi;
where k, = w,/u€ is the wavenumber at frequency for = qwptpa - (f; x Hy,) + va - (h; x M,,). (30)
the material occupying the region shown in Fig. 1. Since

satisfies the scalar Helmholtz equation, one can easily sthv(\)/W, collecting all these results, (26) can be given the desired

that
form with all terms havinga as an inner product. Sinceis a
) ) ) ) ) constant vector, the result must be valid forseind, therefore,
Vix V' xypa=V(a V') +kypa (22) it may be cancelled. After this cancellation and treating the
surface integral terms fafyx, and S separately, the equation
Using this together with (21), we obtain is obtained as
pa-V' x V' xE, —E, -V x V' x¢a / [—gwpap(f; x Hy)+(0; X E) x V9 +(1;- E, ) V'] dS
=a - (—gwpdut) — PV’ x My, + E2E¢) 5=
—wypV'u x Hy) = E, - [kpa+ V'(a- V)] = A N [wpdetp +Mo x V9 + jupVip x H,
@3) ~ (V' E)V' + (3 — KBy av
Also noting that - /S [=awpp(i; x Hy) + (0 x Eo)
x V' + (h; - E,)V'9]dS. (31)

E. V(- V') =V [E.(a- V)] - (a- V)V -E,
(24)  The functions) has the required singularity at the field point
PV x M, =V’ x (M) + M., x V'9) (25) which is surrounded by the surfacs. Considering the
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integral overSy, we have the following for points ofy: TheV operator for the divergence &, (r) can be brought
safely inside the integral sign to obtain
1\ e—7koro . .
V’):—( k —|——> IAIZ 32 v _ HO v _ Ho v
7 JKo To o (32) V.Awo = VJwO.Vz/)dV_ T Von'V/z/}dV'
(37)

As the spheré: shrinks to zero, the first term in the integral
over Sy in (31) tends to zero since the fields are finite aysing
the field pointP. The second and third integrals of the same

equation result in-47 times the field value aP—exactly in =3, Ve = (VI =V (I ) (38)
the same manner as in the Stratton—Chu formulation [1], [2].
Therefore, in (37) and applying the divergence theorem, we obtain
lim / ] = —47E,(r). (33) v ’ge _@/ h.JY
dim, SE[] (r) V-AY, 47r f(v AL AV = S(n J? Y dS.
The final expression fdE,,, after substitutingy; = —n, where (39)
\Illollir;heevn?;mal to all bounding surfaces, but directed out ﬂow the second/ operator for the gradient can be taken inside
the integrals. Doing so, and using the fact tRat = — V'),
1 we get
2 2 !
E.(r)=—— [ [(kt = F)E) + 309 V'p
i Jy VV-A?
x H, — (V' -E,)V'4]dV wo )
1 _ _Ho / qv / Ho sy /
L G MVl o f(v 3V dv + h /S(n 3V V' dS.
L (40)
— /[—jwu(ﬁ < Ho)o + ( x E.)
s , . , A similar analysis will be carried out foF, (r):
xV'y+(n-E,)V]dS  (34)
. . e . —V x F,
where the volume integral ovéf is a principal value integral
because of the limiting process far. v ></ M, ¢ dV
B. Step II: Determination of the Fields of , v
Equivalent Volume Sourcek, and MY, ” Vi x M, dV (41)
Let E, (r) denote the phasor field produced 8§, and . y v _ y v
M¢, at the field pointr inside V. J/ and M, are the Iy VX (ML, p) dV v (VIX ML,y dV
equivalent volume currents operatingw given in (7) and R v , v
(8), and are repeated here for easy reference: = /S(n X M, )i dS — A (VIX M, JpdV.  (42)
Ioy = swe — woco)Ew + I At this point, divideM?, into two parts as
M, =(wp — wopio)H,, + M.
v vA
E? (r) can be found using magnetic- and electric-vector Mo, = My + Mo (43)
potentiali’, (r) and F, (r), respectively, as where M’} = j(wp — wopo)H.,, and use (41) for finding
E; (r) the contribution ofM,, and (42) for that ofM’z.fO*. Carrying
A (1) - YV A (1) = 1 VX F (r) out these calculations, thE}, (r) expression given in (35)
= =W , I — X wo r.
JW0 By Wolloo P, becomes
(35)
E,(r)
The individual terms in this equation will be investigated — W to - 1
separately. ConsideA?, (r), which is given by = A Jo,pdV — el M.,
v Ho v / ! ! v !
v - - v d . ‘ d
A? (r) o A Jo, ()b dV (36) x Vi dV + Iriooco A (V- JL IV dv
where the integral has to be evaluated in the principal-value — 1 (V' x MZ‘?)z/) dV + 1 / (f x M'ﬁfo‘)z/; ds
sense. For brevity, the functional dependence of the sources A JV ar Js
inside the integrals on’, and of the results om, will be __J /(ﬁ,J'U‘ YW dS. (44)
omitted in the following equations. drwoco Js -
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The individual terms in (44) can be expanded as and the magnetic-vector potential term can be modified as
V' x MU =V’ x [f(wp = wopo) H Az (r) = Z_O / (—f1 x H,)op dS
= wV' i x H, +wwopocE, —k2E, T Js
!
+ gwpde — jwopod =0 | V' x (Hep)dv

v
—jwottod,, =wwoctoEy — k%Ew — Jwolod

Ho Ho
V35, =V [weBy — jwoEe + Ju] 4 , ¥ ar [, T

= —woeoV' -E,, _ Z—O Jtpdv. (48)
fi x MY = jwps — wopio) (i x H,) v
h-J7 = g(we —woeo)(h- Eu) + (0 - Jo). When taking the divergence &2, (r) given in (48), the first

term gives zero result and we obtain
Using all these expansions of various terms of (44), we finally

obtain VAL (r)= 0 / BV v+ [ 3, pav.
© dr Jy dr Jy
B, () = [ (02 = BB - Vs (49)
T Jv
x H, + (V' E,)V'y]dV Using
1
+— | [Fwpdety — My, x V9] dV
dm Jy E, V' =V [E.] — V' - [€E,]
~ / (8- J,)V'pdS Jo V' =V (Jutp) — V' - I, (50)
47TCU060 S
+ 4i Jwp(h x Ho ) dS in (49), noting thatv - D, = p, andV - J, = —jwp,, in V,
17r s and applying the divergence theorem gives
i Jwopo(D x Hy)y dS
T Js s _ Mo . Ho A
VA = [ jwe(-E )pdS +— [ (h-J,)¢pdS
/ c(h-BE,)V'ydS dm Js dm Js
dnwoen Js (51)
1
- — [ (a-E,)V'ydS. (45)
dm Js which allows taking the gradient operator inside the integral
sign as
C. Step lll: Determination of the Fields of Equivalent g
Surface Sourced;, and M, VY- A2
Let E;, (r) be the field radiated by the surface sources 1o X ) 1o .,
operating atwo. The equivalent surface sources are repeated =~ /SJW(H CEo)VipdS—— : Jo -0V dS.
here for convenience: (52)
JZ, =—nxH, Gathering these results in tf, expression, we obtain
M;, =nxE,..

B, (r) = —2of0 /S (=i x H, )y dS

E;, (r) can be written using potential formulation as 4r

w
- eh-E,)V'pdS
E;, (r) dmoco /S ( v
_ s J . 1 . J / J., - 2)V'dS
= —jwoA;, (r) — Socorio VV-AZ (r) - %V x Fg, (r) 4drwpeg 5( VA
(46) - — [ (Ax E,) x V9 dS. (53)
47T S

where A? (r) and F;, (r) are the magnetic- and electric-

vector potentials, respectively. The electric-vector potentiQI' Step IV:_Comparison of the Expansionm(r)
term can be written as and Total FieldE,, (r) Generated by the Shifted

Frequency Source3!, , M7, , J;, , andM?,
1 V x F5, (r) = 1 (h x E.) x V¢ (47) The total field phasoiE,,(r) generated by_ the shifted
€0 4r Js frequency sources can be found by the addition of field-of-
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volume-type sources given in (45) and that of surface-typlee related electromagnetic scattering problem [3] if data are
sources given in (53). Noting the cancellation of the first threeeded in a band of frequency. The equivalent volume currents
surface integrals in (53) in the addition, the result is obtained dsfined in this paper are very similar in form to equivalent

polarization and magnetization currents [4] and, hence, can be

E,, (r) =—4i (k2 = EDE 9 4 jwihV'p used in a similar manner in the computational methods for
T Jv , , scattering [4], [5]. The advantage of using shifted-frequency

xH, = (V- E)VigldV equivalent sources is thaty can be kept constant while

1 Dwpdut + M., x V'] dV the incidgnt fielql frequency ch'anges. As a result, the full
am Jy computation of fields at each different frequency for volume-

1 . R type equivalent sources can be avoided. The initial studies
s /S[_jwu(n x Ho)p + (0 x Eo) on the usage of the SFIE for multifrequency electromagnetic
x V' + (A E,)V'y]dS. (54) scattering are reported in [6] and [7], and will be discussed
in a future paper.
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V. CONCLUSION

The SFIE is introduced. It is shown that the frequency
domain field E., H,) in a lossless inhomogeneous regio
with sources radiating at frequency can be obtained using
a set of equivalent volume and surface currents radiating
free space at a different frequenay. Equivalent sources
include the original sources, and they are functions of the
frequencies and the original fiel@®&(,, H.). It is worthwhile
to mention again that the SFIE is valid f& and H fields
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