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Shifted-Frequency Internal Equivalence
Adnan Köksal, Member, IEEE

Abstract—The shifted frequency internal equivalence (SFIE)
theorem involving inhomogeneous regions is introduced and
proven. For a lossless inhomogeneous region using a vector
Green’s theorem and potential formulation, it is shown that
the frequency-domain electromagnetic field at frequency!
inside the region can be obtained using a set of equivalent
volume and surface currents radiating in free space and
at the different frequency !0. The equivalent currents thus
obtained are functions of the two frequencies, electric- and
magnetic-volume-type sources of the original problem, material
parameters, and the original field phasors at!, and they only
exist inside the region and on its boundary. A direct application
of this equivalence is that it can be used to construct an internal
equivalence at a shifted frequency for electromagnetic scattering
problems if data are needed in a band of frequency.!0 can be
kept constant while the incident field frequency changes and, as
a result, full computation of fields at each different frequency
for volume-type equivalent sources can be avoided.

Index Terms—Electromagnetic analysis, electromagnetic scat-
tering by nonhomogeneous media, frequency-domain analysis.

I. NOMENCLATURE

Field point coordinate.
Source point coordinate.

( ) Material parameters of medium occupying.
Original problem frequency.

( ) Electric and magnetic currents in original
problem.

( ) Electric and magnetic charges in original
problem.

( ),
( ) Frequency-domain field in original problem.

Shifted frequency.
Vector functions used in Green’s theorem.
Wave function choice for expansion of

.
Constant vector multiplying .
Wavenumber in free space at .
Wavenumber in material in at .
Surface normal on the boundaries directed
into .
Surface normal on the boundaries directed
out of .

( ) Equivalent electric and magnetic volume cur-
rents at .
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( ) Electric and magnetic charges in the equiva-
lent problem.

( ) Equivalent electric and magnetic surface cur-
rents at .

( ) Frequency-domain field at shifted frequency.
Magnetic vector potential due to .
Magnetic vector potential due to .
Electric vector potential due to .
Electric vector potential due to .

.

II. I NTRODUCTION

T HIS PAPER presents a proof of an internal equivalence
in the frequency domain at a shifted frequency for an

electromagnetic problem involving a different frequency.
The original problem involves a lossless inhomogeneous

region of space , which has continuously differentiable
material parameters. The sources in, both electric and
magnetic, radiate at frequency.

In the equivalent problem, the sources exist only in
and on its boundary , and they radiate in free space at a
different frequency . These equivalent sources consist of the
sources of the original problem, and electric- and magnetic-
type volume and surface currents. Equivalent volume currents
are functions of the two frequenciesand , and the sources
and the field of the original problem, whereas the surface
currents depend on the original field (, ) only.

The equivalence is presented in Section II, and its proof is
given in Section III, followed by the conclusion in Section IV.
The proof is based on an application of a vector Green’s
theorem on ( ), and on the potential formulation of
the field in the equivalent problem, which is denoted by
( ). The expansion is very similar to the Stratton–Chu
formulation [1], [2], with the main difference being the choice
of the wave function .

In this paper, the word equivalence is meant for the equiv-
alence of ( ) to ( ) only. As will become
obvious after the equivalence is stated and its proof is given,

and fields in the original and equivalent problem are
different.

III. SHIFTED-FREQUENCY INTERNAL EQUIVALENCE

Consider the region illustrated in Fig. 1, bounded by
the surfaces . The material parameters ( ) in

are assumed to be continuously differentiable real functions
of position. The electromagnetic field in generated by the
sources operating at the frequencysatisfies the following
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Fig. 1. Electromagnetic field inV is excited by the sources(J! ; M!)
operating at the frequency!. Field pointP is surrounded by a sphere� for
the application of vector Green’s theorem.

Maxwell’s equations:

(1)

(2)

(3)

(4)

and the following continuity equations:

(5)

(6)

The electromagnetic field ( ) in can be obtained in
an equivalent problem where the sources radiate at a different
frequency. The equivalence is given as follows.

Equivalence: The frequency-domain electromagnetic field
( ) in the region with properties described above and
shown in Fig. 1 can be obtained using the following sources
defined in , radiating in free-space at the frequency:

(7)

(8)

(9)

(10)

where is the surface normal on the boundary of, and it is
directed out of region . The equivalent problem thus obtained
is illustrated in Fig. 2. With the equivalent source definitions
given in (7)–(10), the electromagnetic field in the equivalent
problem satisfies the following Maxwell’s equations:

(11)

(12)

(13)

(14)

and the following continuity equations:

(15)

(16)

As a result, in order to prove shifted frequency internal
equivalence (SFIE), we need to show that

Fig. 2. Shifted-frequency equivalent problem for Fig. 1. Material body is
replaced by the equivalent sources(Jv

!
; Mv

!
) and(Js

!
; Ms

!
) radiating

in free space at frequency!.

IV. PROOF OF SFIE

The proof of the equivalence will be carried out in four
steps.

In the first step, an expansion of will be obtained
using a vector Green’s theorem. The procedure follows the
same lines as the Stratton–Chu formulation [1], [2]. The main
differences are the assumed inhomogeneity of the medium,
the usage of source point-field point notation, and the usage
of a different function to carry out the expansion. A
function involving the wavenumber in free space at frequency

is chosen to obtain an expansion that can be compared to
potential formulation results.

In the second step, the electric-field phasor of equivalent
volume sources operating at will be obtained in the
frequency domain using potential theory.

The third step involves the calculation of the electric-field
phasor of equivalent surface sources operating atusing the
potential theory.

In the fourth and final step, the electric fields calculated in
the second and the third step will be added to obtain ,
and the result will be shown to be the same as the expansion
obtained for in the first step. The discussion for the case
of the magnetic-field phasor will complete the proof.

A. Step I: Expansion of

The expansion of will be carried out using a vector
Green’s theorem. Consider again the region, shown in
Fig. 1, bounded by the surfaces . Use to denote
the union of all , . Let and be two vector
functions of position in this region, with continuous first and
second derivatives everywhere withinand on the boundary
surfaces. Then, if is the unit vector normal to a bounding
surface directed into the region

(17)

In order to apply the given vector Green’s theorem to expand
, consider an interior point in and surround this
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point by a sphere of radius and denote the remaining
volume by . Considering Fig. 1, is the region
bounded by and .

Choose the vector functions of position and as

(18)

(19)

where , the wavenumber in free space at,
and is a constant vector.

In the region , and , as defined by (18) and
(19), satisfy the continuity requirements of the vector Green’s
theorem given in (17). Applying this theorem to chosenand

, we have

(20)

In (20), and in the equations following, during the expansion it
is understood that ( ), ( ), and ( ) inside the
integral signs depend on, and this dependence is suppressed
for brevity unless it is necessary to differentiate between the
source and the field coordinates.

We can use (1) and (2) after converting the equations to
primed coordinates to obtain as

(21)

where is the wavenumber at frequency for
the material occupying the region shown in Fig. 1. Since
satisfies the scalar Helmholtz equation, one can easily show
that

(22)

Using this together with (21), we obtain

(23)

Also noting that

(24)

(25)

and combining all these facts, (20) can be rewritten as

(26)

The second- and third-volume integrals in (26) can be trans-
formed into the following surface integrals:

(27)

(28)

In order to convert the surface integrals on the right-hand side
in (26) to the desired form, the following transformations are
utilized:

(29)

(30)

Now, collecting all these results, (26) can be given the desired
form with all terms having as an inner product. Sinceis a
constant vector, the result must be valid for alland, therefore,
it may be cancelled. After this cancellation and treating the
surface integral terms for and separately, the equation
is obtained as

(31)

The function has the required singularity at the field point
which is surrounded by the surface . Considering the
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integral over , we have the following for points on :

(32)

As the sphere shrinks to zero, the first term in the integral
over in (31) tends to zero since the fields are finite at
the field point . The second and third integrals of the same
equation result in times the field value at —exactly in
the same manner as in the Stratton–Chu formulation [1], [2].
Therefore,

(33)

The final expression for , after substituting , where
is the normal to all bounding surfaces, but directed out of

volume is

(34)

where the volume integral over is a principal value integral
because of the limiting process for.

B. Step II: Determination of the Fields of
Equivalent Volume Sources and

Let denote the phasor field produced by and
at the field point inside . and are the

equivalent volume currents operating at given in (7) and
(8), and are repeated here for easy reference:

can be found using magnetic- and electric-vector
potentials and , respectively, as

(35)

The individual terms in this equation will be investigated
separately. Consider , which is given by

(36)

where the integral has to be evaluated in the principal-value
sense. For brevity, the functional dependence of the sources
inside the integrals on , and of the results on, will be
omitted in the following equations.

The operator for the divergence of can be brought
safely inside the integral sign to obtain

(37)

Using

(38)

in (37) and applying the divergence theorem, we obtain

(39)

Now the second operator for the gradient can be taken inside
the integrals. Doing so, and using the fact that ,
we get

(40)

A similar analysis will be carried out for :

(41)

(42)

At this point, divide into two parts as

(43)

where , and use (41) for finding
the contribution of and (42) for that of . Carrying
out these calculations, the expression given in (35)
becomes

(44)
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The individual terms in (44) can be expanded as

Using all these expansions of various terms of (44), we finally
obtain

(45)

C. Step III: Determination of the Fields of Equivalent
Surface Sources and

Let be the field radiated by the surface sources
operating at . The equivalent surface sources are repeated
here for convenience:

can be written using potential formulation as

(46)

where and are the magnetic- and electric-
vector potentials, respectively. The electric-vector potential
term can be written as

(47)

and the magnetic-vector potential term can be modified as

(48)

When taking the divergence of given in (48), the first
term gives zero result and we obtain

(49)

Using

(50)

in (49), noting that and in ,
and applying the divergence theorem gives

(51)

which allows taking the gradient operator inside the integral
sign as

(52)

Gathering these results in the expression, we obtain

(53)

D. Step IV: Comparison of the Expansion of
and Total Field Generated by the Shifted
Frequency Sources , , , and

The total field phasor generated by the shifted
frequency sources can be found by the addition of field-of-
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volume-type sources given in (45) and that of surface-type
sources given in (53). Noting the cancellation of the first three
surface integrals in (53) in the addition, the result is obtained as

(54)

However, this is identical with the expansion of given
in (34) and, hence,

(55)

is obtained proving the equivalence for the electric-field pha-
sor.

A completely dual derivation following a similar approach
may be followed to show that in also,
which will not be repeated here.

For points on the surface , in all of the previous
equations must be replaced by the correct subtended solid
angle. For example, for smooth points on the surface, the
subtended solid angle is [3], and all previous equations will
be valid for such points once is replaced with in them.
As a result, the equivalence is also valid for points on.

V. CONCLUSION

The SFIE is introduced. It is shown that the frequency-
domain field ( ) in a lossless inhomogeneous region
with sources radiating at frequency can be obtained using
a set of equivalent volume and surface currents radiating in
free space at a different frequency . Equivalent sources
include the original sources, and they are functions of the two
frequencies and the original field ( ). It is worthwhile
to mention again that the SFIE is valid for and fields
only, but not for and .

A direct application of this equivalence is that it can be used
to construct an internal equivalence at a shifted frequency for

the related electromagnetic scattering problem [3] if data are
needed in a band of frequency. The equivalent volume currents
defined in this paper are very similar in form to equivalent
polarization and magnetization currents [4] and, hence, can be
used in a similar manner in the computational methods for
scattering [4], [5]. The advantage of using shifted-frequency
equivalent sources is that can be kept constant while
the incident field frequency changes. As a result, the full
computation of fields at each different frequency for volume-
type equivalent sources can be avoided. The initial studies
on the usage of the SFIE for multifrequency electromagnetic
scattering are reported in [6] and [7], and will be discussed
in a future paper.
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